skip to main content


Search for: All records

Creators/Authors contains: "Lin, Sammy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Lightweight authenticated ciphers are crucial in many resource-constrained applications, including hardware security. To protect Intellectual Property (IPs) from theft and reverse-engineering, multiple obfuscation methods have been developed. An essential component of such schemes is the need for secrecy and authenticity of the obfuscation keys. Such keys may need to be exchanged through the unprotected channels, and their recovery attempted using side-channel attacks. However, the use of the current AES-GCM standard to protected key exchange requires a substantial area and power overhead. NIST is currently coordinating a standardization process to select lightweight algorithms for resource-constrained applications. Although security against cryptanalysis is paramount, cost, performance, and resistance to side-channel attacks are among the most important selection criteria. Since the cost of protection against side-channel attacks is a function of the algorithm, quantifying this cost is necessary for estimating its cost and performance in real-world applications. In this work, we investigate side-channel resistant lightweight implementations of an authenticated cipher TinyJAMBU, one of ten finalists in the current NIST LWC standardization process. Our results demonstrate that these implementations achieve robust security against side-channel attacks while keeping the area and power consumption significantly lower than it is possible using the current standards. 
    more » « less